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1. INTRODUCTION 

This report documents the construction details for the Ballistic 

Research Laboratory (BRL) Multidriver-Shock-Tube (MD-ST) model of the 

seven-driver Centre d'Etude de Grarnat(CEG), France, Large Blast 

Simulator (LBS) facility. 1 Assembly and construction details peculiar 

to the BRL facility were dictated by the exigencies of available pieces 

and materials and the capability for quick and simple machining pro­

cedures. 

The construction of the model was deemed a very use ful adjunct to 

~he computational efforts on-going within BRL to predict complex shock 

tube behavior, particularly to support LBS design. 2
'

3 An axisymmetric 

Single-Driver-Shock-Tube (SD-ST) model, also scaled to the CEG facil­

ity, has produced useful and some otherwise unavailable data for com­

parison with calculations. 4 However , in view of the proposed U.S. con­

struction of a large multidriver LBS facility (also modeled after the 

CEG facility), it seemed prudent to assemble a prototype and to perform 

some tests to assure that performance would be as expected and that 

unrealized three-dimensional effects were not present. 

The following sections illustrate the BRL MD-ST facility construc­

tion and present some of the data already obtained. Additionally, an 

account is given of an operational problem that arose during the tests 

at the highest shock pressures and how the problem was resolved. 
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2. FACILITY CONSTRUCTION 

2.1 General features. As mentioned, the model for the BRL facility 

is the operational LBS facility at CEG. A sketch of this facility is 

shown in Figure 1. The driven tube/test section is noted to be nearly 

half-cylindrical. Conical nozzles of six-degree half-angle protrude 

from the seven driver tubes and diaphragm section into the driven tube. 

A schematic with general overall dimensions is shown in Figure 2 with a 

cross-sectional view which shows how the nozzles fill out the available 

driven tube area (-40 percent of full opening). The test station is 

located seven (effective) driven tube diameters downstream of the noz ­

zle openings. Additionally, for shock pressures above 60 kPa (8.7 

psi), the area about the nozzles in the driven tube is left open to the 

surrounding atmosphere, thereby allowing entrainment of outside air. 

This procedure permits lengthening the shock wave's positive duration 

or, in effect , the simulated yield of the blast wave. The seven driver 

tubes are of four different lengths, as noted in Figure 2, which, on 

emptying at various times and rates, produce the decaying blast wave­

form. Examples of the facility ' s waveforms produced will be seen in 

the figures to be presented in the ''Results" section. 

2.2 Driven tube construction. The CEG driven tube shape was , for ­

tuitously, closely duplicatable with existing U- shaped sections from an 

abandoned modification to the BRL 0.61-m (24-in) shock tube test sec­

tion. The important dimension for the sections was the half-cylinder 
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radius of 0.2873 m (11.312 in) and dictated the length scale for the 

BRL model--about 1:22 (1:21.58) of the CEG facility. The floor of the 

driven section is welded in place to a scaled height below the center 

of the circular cross section, to closely simulate the CEG facility's 

cross section. In the CEG facility, the vertical walls, at 12 m apart 

at their floor width, intercept the circular arc of their tube, of 

radius 6 . 2 m, at a height of 2.46 m (8.07 ft) above floor level. Our 

construction leads to a 1.1% greater scaled cross-sectional area than 

occurs with a true modeling. This should be an insignificant differ­

ence , judging from the opposite effect of target blockages in shock 

tubes being insignificant below about 2%. 5 Heavy metal tabs, welded 

near the section ends at four places about the periphery, allowed bolt­

ing of sections together to form the driven tube length. Extra sec­

tions were added, to give a total driven tube length of 13.7 m (45ft). 

The extra length over the scaled CEG length was deemed desirable to 

observe the full waveform development without interference from 

upstream-running rarefaction waves reflecting from the open end. (The 

CEG Rarefaction Wave Eliminator was not modeled.) Sealing between sec­

tion joints was effected by beads of G.E. Silicone RTV caulk placed and 

pressed into the bolted joint and smoothed on the inside to present a 

reasonably smooth surface inside the tube. Threaded 1/2"-20 pressure 

gage ports were made at one- (effective) tube-diameter intervals for 

the first 10 diameters, then at 2-diameter intervals beyond. 

2.3 Driver construction. The driver sections are pieced together 

from standard seamless steel tubing, using couplers to join tube sec­

tions and end plugs and special end pieces to obtain the precise scaled 
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lengths desired. The main driver tubes are made up of 0.762- and 

1.067-m (2-1/2- and 3-1/2-ft) lengths. The short lengths facilitate 

the boring out required of the stock tubing. Wall thicknesses were 

chosen to permit driver pressures to 24 ,000 kPa (3,500 psi) with an 

estimated safety factor of three. The main tubes have short sleeves, 

also of stock tubing, welded to their ends and threaded to fit into the 

couplers. Couplers are likewise of stock steel tubing. An obvious 

construction note: sleeves should be welded on before threads are 

turned and ends squared off . Otherwi se, the heat may distort the 

threads, and the weld-bead may find its way into the threads as well. 

Sealing is effected between the tube sections when the coupler draws up 

the mating tubing ends , one carrying an 0-ring and groove and the other 

the sealing surface . A thin shoulder in the coupler between the inside 

threads prevents a tube end from advanc ing beyond its appropriate 

thread yet allows for the 0-ring sealing. Table 1 lists 0-ring sizes 

and their location, as well as seamless steel tubing used. Table 2 

lists geometric features between the CEG and the BRL model facilities. 

The high pressure gases for the driver are brought in through the 

end plugs via thick walled copper tubing . A manifold of four air 

bottles constitutes the pressurizing system for driver pressures below 

13,800 kPa (2,000 psi). For the highest pressures, a secondary bank of 

three nitrogen bottles is manually switched in and connected to the 

driver gas tubing. Because of available supplies . (or lack of them), 

the procedure for switching over to the nitrogen supply is the least 
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Driver 

Sleeve 

Coupling 

Note: 

TABLE 1. Driver Tubing and Details. 

Standard seamless steel tubing 

Rough Machined 
dimension dimension 

Tubing Sched. in/m (OD), in/m 

3" nom./ XX 3.500/0.08890 (OD) 3.500/0.08890 
0.07620m 0.600/0.01524 (Wall) 2.426/0.6162 

4" nom./ 160 4.500/0.11430 (OD) 4.30/0.1092 
0.10160m 0.531/0.01349 (Wall) 

5 " nom. XX 5.563/0.14130 (OD) 5.45/0.1384 
0.12700m 0.750/0.01905 (Wall) 

Location of the 0-rings was as follows: Parker t2-120, 
diaphragm; Parker t2-140, end plug; Parker t2-147, tubing end. 
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TABLE 1 Cont. 

Driver Tubing Lengths 

MD - ST Model CEG 

Tube Make- up +Endpiece** 

m m m 
in in 

1, 7 2.04 S*+ 1 L* 0.211 44 

80.3 8.3 

2, 6 1. 204 1 L 0.137 26 

47.4 5.4 

3,5 0.881 1 s 0 .119 19 

34.7 4 . 7 

4 1 . 623 2 s 0 .099 35 

63.9 3 .9 

* S 0.762m/2-1/2ft or 30i n 

* L 1.067m/3-1/2ft o r 42in 

** 0.016m or 5/8in required to accept End Plug 
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TABLE 2. Geometric Features of CEG and BRL Model Fac ilities . 

Driven tube 

Ref. equiv. D 

Cross-section 
area 

(Semi-eire . ) 
radius 

Length 

Driver tube 

Inside D 

Throat D 

Total Volume 

m 

0 . 442 

0.154 

0.2873 

13.7 

0.01661 

0.0308 1 

MD-ST model 

in ft m 

17.41 9 . 494 

238 

11.312 6. 2 

45 105 

2.426 1. 33 

1. 213 0 . 665 

0.0295 1, 800 

Note: Scale was 21.58 for the MD-ST model and 1 f o r the CEG model . 

9 
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satisfactory of the operation . Plans to streamline this part of the 

operation are being con sidered. A Bytrex semiconductor pressure 

gage monitored the pressure in the driver. This is periodically 

calibrated against a Heise-Bourdon gage . 

2 . 4. Converging-diverging nozzle and diaphragm station . 

2.4.1. Converging section . The converging nozzle section is 

machined from steel bar stock. It has an inlet-to-throat area ratio 

of 4:1 . The section is bolted to a heavy steel reaction pier and 

caps the lengths of tubing forming a single driver tube . The longer 

driver tubes are simply supported by a second pier. 

2.4 . 2. Diverging section and diaphragm station. The conical 

diverging nozzle section is machined from aluminum. Pressure gage 

ports are provided at the throat section of three of the diverging 

nozzle pieces and along the wall, at intervals in steps of the 

throat area. This spacing is thought to be more meaningful for the 

nozzle flow over spacing equally. 

Additionally, nozzles having no diverging section were made up 

for later shots featuring a discontinuous area change to the driven 

tube. Earlier shots' and other evidence3 with a s ingle driver shock 

tube model suggested equivalent performance and better wave shape. 

Results using these abrupt opening nozzles wil l be reported at a 

later date. 

An early photograph of the assembled model · facility i s shown on 

its mounting stand in Figure 3. The holes in the second mounting 

pier as placed are not reached by the two shortest driver tubes. 
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Figure 3 . Photograph of BRL multidriver shock tube model. 
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The diaphragm station accepts circular diaphragms, which are 

cut from various thicknesses of soft, annealed aluminum sheet. The 

bursting of diaphragms is accomplished with small, exploding bridge 

wire (EBW) detonators--Reynolds Industries, Inc.; RP-2s containing 

20 mg of explosive--which are held against the diaphragm by small 

wooden sleeves glued to the diaphragm. Diaphragms are pre-bulged to 

prevent wooden "det-holders" from becoming unglued due to stretching 

of the aluminum material. For the purpose, a special, small, pre­

bulge chamber was made up to allow convenient pre-bulging. Tests in 

the BRL SD-ST model with a single Reynolds RP-87 detonator (with 68 

mg explosive) have demonstrated negligible influence of the 

detonator blast on the flow. 4 With the MD-ST facility and seven 

drivers, one has 140 mg explosive using the RP-2s . However, the 

volume of gas available to be processed by the detonator blast is 

proportional to (effect.D) 3 (since the test station is placed seven 

effect.O downstream of nozzle openings) , which is (0.442m) 3 for the 

MD-ST and (0.254) 3 for the SO-ST. The gas volume for the MO-ST is 

then seen to be greater by a factor 5+ . Thus, the detonators' 

effect on the MO-ST flow may also reasonably be expected to be neg­

ligible. 

Another problem associated with multiple drivers is simultan­

eous diaphragm opening. Amann7 has reported that, for a three­

driver shock tube , there are severe distortions of the shock front 

under circumstances of intentionally delayed diaphragm openings. 

With electronic control of detonator rupture of diaphragms, it is 
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felt that the diaphragm opening process should be practically sim­

ultaneous for our facility and, hence, not a problem. Additionally , 

we have made bench tests of pairs of detonators firing, using the 

MD-ST electronics, and photodiode results indicate that the firings 

occur within tens of ~s of each other. This time interval is a 

small fraction of the diaphragm opening time, estimated following an 

idealized calculational model8 to be a few hundreds of ~s and, 

hence, insignificant. 

2.5. Instrumentation . The instrumentation for the MD-ST model 

consists principally of piezoelectric pressure gages placed side-on 

in the wall for static pressure measurements, at one or two 

(effective) diameters downstream of the nozzle openings, and in 

three stagnation pressure rakes of three gages each, mountable at 

stations off the tube floor at 2, 3, 7, 9, 12, and 24 diameters from 

nozzle openings. Additionally, small, windowed ports were later 

provided at 6, 16, and 24 D downstream for small laser beams used to 

monitor contact surface passage, supplementing the stagnation pres­

sure probes. The lasers are aimed across the flow at photodiode 

sensors, which record a drop in intensity with passage of the vapor 

cloud condensed from the cold, expanded air-driver gas. 

The recording of data is via standard analog tape, and data 

tapes are digitized and reduced off-line (Fig. 4). Currently, an 

effort is being made to change over to digital recording instrumen­

tation for its greater accuracy and convenience, but the changeover 

has not yet been accomplished. 

13 



DATA ACQUISITION SCHEME 
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L- ------ --- -- --
DATA REDUCTION j -----

Figure 4. Data acquisition scheme . 
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3. RESULTS 

Sample pressure traces over distances to 14 D downstream of the 

nozzle are shown in Figure 5 for a mid-level shot--150 kPa (22 psi) 

at the test station 7. Station NA1 is located in the nozzle throat, 

and the trace shows the emptying history of the driver tube. The 

pressure waveform takes on the desired decaying blast waveform at 

the test station 7. (Station numbers correspond to effective dia-

meters downstream of the nozzle opening.) Other flow features are 

noted that have been seen in the axisymmetric SD-ST model and that 

are discussed there. 4 The noise in the traces in the closer-in sta­

tions is believed to be a considerable contribution from the flow 

disturbances. These are noted to be much quietened by Station 14 

for this run. The trace of station 7ST is the stagnation pressure 

trace near the "center'' of the tube . Of particular interest is the 

pressure spike occurring -10 ms after shock arrival over the gage. 

This spike is the cold driver gas flowing over the gage, which com­

plicates proposed drag testing of objects/targets placed in the 

flow. 

A set of runs was performed to prove the performance of the MO­

ST model and to provide data to enable comparisons with other data. 

Table 3 lists the achieved flow conditions and resulting shock pres­

sures. Additionally, the resulting shock pressure levels for the 

shots were calculated from measured shock velocities (where avail­

able), and these have also been tabulated. Such data offer assur­

ances of correctness of shock pressures measured beyond problems 

15 
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TABLE 3. Mul tidriver Shock Tube Shots. 

~P2 
P2/P1 

Us, from Us and 
P4/P1 m/s kPa ps i P2/P1 shock relations 

17.9 401 37 .3 5.41 1.37 1. 36 

26.4 437 53 . 4 7 . 75 1.53 1. 67 

26.5 447 56 8.09 1.55 1. 71 

38.2 65 9 . 42 1. 64 

39.7 67 9.72 1. 65 

63.1 464 110 1 6 .0 2.07 2.07 

64.0 105 15.2 2.03 

81.6 501 125 18 . 2 2.22 2.37 

107.1 524 150 21.8 2.47 2.61 

111 . oa 497 140 20.3 2.37 2 .22 

128.0 525 170 24 . 7 2.65 2.51 

130.8 538 169 24 . 5 2.65 2.72 

167.0 200 29 . 0 2.93 

201.0 569 220 32 . 0 3.14 3.16 

a A leaking joint limited the pressurizing to below the dia-
phragm's pre-bulge pressure and, thus, l owered the shock pressure 
obtained. 
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with gage calibration, imperfect diaphragm rupture, and leaks, 

etc . In this regard, we note that, on a few occasions in which 

driver pressures were 10-15% below the natural burst pressure for 

the diaphragm, the resulting shock pressures tended to be lower 

than expected, and the shock ' s leading edge had a noticeably 

s l ower rise . The lower shock pressures would be confirmed by the 

shock velocity calculation . 

Figure 6 displays the MD-ST model performance over the range 

of shock pressures. The theoretical curve is from a Quasi-1D 

calculation. 3 Other data are from the axisymmetric SD-ST model4 

and from the full-scale facility. 1
'

9 All of the experimental data 

seem to agree reasonably well with each other, and they deviate 

f r om the Q1D calculation at the higher levels, probably due to 

non - ideal effects , which are not accounted for in the calcula­

tion. 

4 . DOUBLE - DIAPHRAGM TECHNIQUE 

Reaching the desired shock overpressures of 200+ kPa (30+ 

psi) required a different procedure. Early on , it was noted that 

the thicker diaphragms necessary to hold back the higher pres­

sures were not opening as fully as thought desirable. Indeed, a 

shot at a driver pressure of 15,860 kPa (2300 psi) gave a shock 

pressure duplicating results at a previous 13,790 kPa (2000 psi) 

driver pressure level. Subsequent inspection of burst diaphragms 

showed a considerable "necking down '' of the diaphragms' open 

19 



-

4.0 300 

3.5 250 

A 

Cl. ! 
.......... 3.0 200 

N 
Cl. 

:I: 
~ 

~ z 
w 2.5 150 
0:: /. ~ 
(J) A / 
~ •• u ./ 

0 
:I: 2.0 100 
(J) • BRL-MD-ST 

- Q1D COMPUTATION 

1.5 
A BRL SD-ST MJDEL 

50 
X HA TS/ CEG TESTS 

I FRENCH MEAS. 

1.0 
I 

0 

0 50 100 150 200 250 

DRIVER-PRESSURE RATIO, P 4 I P 1 

Figure 6 . MD-ST model performance and comparisons with other 
data . 

20 

0 
Cl. 
~ 

w 
0:: 
::> 
(/) 
(/) 
w 
0:: 
Cl. 
0:: 
w 
> 
0 
~ 
u 
0 
:I: 
(/) 



area, thus leading to reduced mass flux and the lower shock pres­

sure. (Shock velocity checks also showed the l ower than desired 

shock flow.) Thoughts of perhaps using larger detonators, scor­

ing of diaphragms, and other diaphragm-opening techniques were 

considered, but none of these seemed to be the optimal solution. 

Attending to the diaphragm seemed to require more knowledge 

of metals and behavior than was available. Hence, a tactical 

shift was made to invoke the known technique of using double dia­

phragms. The procedure would make use of two thinner diaphragms, 

one diaphragm holding off a reduced pressure, p', which supports 

the primary diaphragm at the full driver pressure, p4 , but which 

needs to hold off only (p4- p'). The intermediate pressure, p ', 

was selected based on previous experience with available dia­

phragms. This was usually one-half or less of the driver pres­

sure, p4, to minimize extraneous wave propagation ahead of the 

main shock. 

To implement the double-diaphragm technique, a set of metal 

discs were made up, approximately 3.2 em (1-1/4 in) x 8.25 em 

(3.25 in) diameter, appropriately machined for 0-ring grooves, 

and bored to the nozzle throat diameter. Then the two selected 

diaphragms sealed off and formed the secondary chamber for a 

disc, which is clamped between converging and diverging nozzle 

sections. The sketch in Figure 7 shows the double-diaphragm disc 
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in position. The photograph in Figure 8 shows the assembled con­

figuration . The secondary chambers are filled from a small mani­

fold block connected by a tube to the primary driver chambers. 

In this way, the secondary chamber pressure should lag behind 

that in the main drivers and, hence, be less susceptible to 

accidental overpressures . At the appropriate p', the secondary 

chamber is valved off and connected to a pressure reservoir pre­

filled to the selected pressure--any leaks into or out of the 

small volume at pressure, p', cause premature rupture. The main 

driver chambers are then taken up in pressure to the desired p4. 

The detonators on the secondary diaphragms are then fired, 

initiating the secondary diaphragm break, which is followed very 

quickly by the primary diaphragm rupture. 

5. SUMMARY 

Construction of a MD-ST model has been accomplished, and its 

performance for shock pressures to 220 kPa (32 psi) has been 

demonstrated . The model facility provides the BRL with a unique 

experimental faci lity for testing of Large Blast Simulator design 

concepts and modifications and for convenient experimental check 

of corresponding flow calculations. Construction features have 

been detailed to facilitate the model MD-ST operation and main­

tenance. 
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